1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
//! A wide string library for converting to and from wide string variants.
//!
//! This library provides multiple types of wide strings, each corresponding to a string types in
//! the Rust standard library. [`Utf16String`] and [`Utf32String`] are analogous to the standard
//! [`String`] type, providing a similar interface, and are always encoded as valid UTF-16 and
//! UTF-32, respectively. They are the only type in this library that can losslessly and infallibly
//! convert to and from [`String`], and are the easiest type to work with. They are not designed for
//! working with FFI, but do support efficient conversions from the FFI types.
//!
//! [`U16String`] and [`U32String`], on the other hand, are similar to (but not the same as),
//! [`OsString`], and are designed around working with FFI. Unlike the UTF variants, these strings
//! do not have a defined encoding, and can work with any wide character strings, regardless of
//! the encoding. They can be converted to and from [`OsString`] (but may require an encoding
//! conversion depending on the platform), although that string type is an OS-specified
//! encoding, so take special care.
//!
//! [`U16String`] and [`U32String`] also allow access and mutation that relies on the user
//! to enforce any constraints on the data. Some methods do assume a UTF encoding, but do so in a
//! way that handles malformed encoding data. For FFI, use [`U16String`] or [`U32String`] when you
//! simply need to pass-through string data, or when you're not dealing with a nul-terminated data.
//!
//! Finally, [`U16CString`] and [`U32CString`] are wide version of the standard [`CString`] type.
//! Like [`U16String`] and [`U32String`], they do not have defined encoding, but are designed to
//! work with FFI, particularly C-style nul-terminated wide string data. These C-style strings are
//! always terminated in a nul value, and are guaranteed to contain no interior nul values (unless
//! unchecked methods are used). Again, these types may contain ill-formed encoding data, and
//! methods handle it appropriately. Use [`U16CString`] or [`U32CString`] anytime you must properly
//! handle nul values for when dealing with wide string C FFI.
//!
//! Like the standard Rust string types, each wide string type has its corresponding wide string
//! slice type, as shown in the following table:
//!
//! | String Type | Slice Type |
//! |-----------------|--------------|
//! | [`Utf16String`] | [`Utf16Str`] |
//! | [`Utf32String`] | [`Utf32Str`] |
//! | [`U16String`] | [`U16Str`] |
//! | [`U32String`] | [`U32Str`] |
//! | [`U16CString`] | [`U16CStr`] |
//! | [`U32CString`] | [`U32CStr`] |
//!
//! All the string types in this library can be converted between string types of the same bit
//! width, as well as appropriate standard Rust types, but be lossy and/or require knowledge of the
//! underlying encoding. The UTF strings additionally can be converted between the two sizes of
//! string, re-encoding the strings.
//!
//! # Wide string literals
//!
//! Macros are provided for each wide string slice type that convert standard Rust [`str`] literals
//! into UTF-16 or UTF-32 encoded versions of the slice type at *compile time*.
//!
//! ```
//! use widestring::u16str;
//! let hello = u16str!("Hello, world!"); // `hello` will be a &U16Str value
//! ```
//!
//! These can be used anywhere a `const` function can be used, and provide a convenient method of
//! specifying wide string literals instead of coding values by hand. The resulting string slices
//! are always valid UTF encoding, and the [`u16cstr!`] and [`u32cstr!`] macros are automatically
//! nul-terminated.
//!
//! # Cargo features
//!
//! This crate supports `no_std` when default cargo features are disabled. The `std` and `alloc`
//! cargo features (enabled by default) enable the owned string types: [`U16String`], [`U32String`],
//! [`U16CString`], [`U32CString`], [`Utf16String`], and [`Utf32String`] types and their modules.
//! Other types such as the string slices do not require allocation and can be used in a `no_std`
//! environment, even without the [`alloc`](https://doc.rust-lang.org/stable/alloc/index.html)
//! crate.
//!
//! # Remarks on UTF-16 and UTF-32
//!
//! UTF-16 encoding is a variable-length encoding. The 16-bit code units can specificy Unicode code
//! points either as single units or in _surrogate pairs_. Because every value might be part of a
//! surrogate pair, many regular string operations on UTF-16 data, including indexing, writing, or
//! even iterating, require considering either one or two values at a time. This library provides
//! safe methods for these operations when the data is known to be UTF-16, such as with
//! [`Utf16String`]. In those cases, keep in mind that the number of elements (`len()`) of the
//! wide string is _not_ equivalent to the number of Unicode code points in the string, but is
//! instead the number of code unit values.
//!
//! For [`U16String`] and [`U16CString`], which do not define an encoding, these same operations
//! (indexing, mutating, iterating) do _not_ take into account UTF-16 encoding and may result in
//! sequences that are ill-formed UTF-16. Some methods are provided that do make an exception to
//! this and treat the strings as malformed UTF-16, which are specified in their documentation as to
//! how they handle the invalid data.
//!
//! UTF-32 simply encodes Unicode code points as-is in 32-bit Unicode Scalar Values, but Unicode
//! character code points are reserved only for 21-bits, and UTF-16 surrogates are invalid in
//! UTF-32. Since UTF-32 is a fixed-width encoding, it is much easier to deal with, but equivalent
//! methods to the 16-bit strings are provided for compatibility.
//!
//! All the 32-bit wide strings provide efficient methods to convert to and from sequences of
//! [`char`] data, as the representation of UTF-32 strings is functionally equivalent to sequences
//! of [`char`]s. Keep in mind that only [`Utf32String`] guaruntees this equivalence, however, since
//! the other strings may contain invalid values.
//!
//! # FFI with C/C++ `wchar_t`
//!
//! C/C++'s `wchar_t` (and C++'s corresponding `widestring`) varies in size depending on compiler
//! and platform. Typically, `wchar_t` is 16-bits on Windows and 32-bits on most Unix-based
//! platforms. For convenience when using `wchar_t`-based FFI's, type aliases for the corresponding
//! string types are provided: [`WideString`] aliases [`U16String`] on Windows or [`U32String`]
//! elsewhere, [`WideCString`] aliases [`U16CString`] or [`U32CString`], and [`WideUtfString`]
//! aliases [`Utf16String`] or [`Utf32String`]. [`WideStr`], [`WideCStr`], and [`WideUtfStr`] are
//! provided for the string slice types. The [`WideChar`] alias is also provided, aliasing [`u16`]
//! or [`u32`] depending on platform.
//!
//! When not interacting with a FFI that uses `wchar_t`, it is recommended to use the string types
//! directly rather than via the wide alias.
//!
//! # Nul values
//!
//! This crate uses the term legacy ASCII term "nul" to refer to Unicode code point `U+0000 NULL`
//! and its associated code unit representation as zero-value bytes. This is to disambiguate this
//! zero value from null pointer values. C-style strings end in a nul value, while regular Rust
//! strings allow interior nul values and are not terminated with nul.
//!
//! # Examples
//!
//! The following example uses [`U16String`] to get Windows error messages, since `FormatMessageW`
//! returns a string length for us and we don't need to pass error messages into other FFI
//! functions so we don't need to worry about nul values.
//!
//! ```rust
//! # #[cfg(any(not(windows), not(feature = "alloc")))]
//! # fn main() {}
//! # extern crate winapi;
//! # extern crate widestring;
//! # #[cfg(all(windows, feature = "alloc"))]
//! # fn main() {
//! use winapi::um::winbase::{FormatMessageW, LocalFree, FORMAT_MESSAGE_FROM_SYSTEM,
//! FORMAT_MESSAGE_ALLOCATE_BUFFER, FORMAT_MESSAGE_IGNORE_INSERTS};
//! use winapi::shared::ntdef::LPWSTR;
//! use winapi::shared::minwindef::HLOCAL;
//! use std::ptr;
//! use widestring::U16String;
//! # use winapi::shared::minwindef::DWORD;
//! # let error_code: DWORD = 0;
//!
//! let s: U16String;
//! unsafe {
//! // First, get a string buffer from some windows api such as FormatMessageW...
//! let mut buffer: LPWSTR = ptr::null_mut();
//! let strlen = FormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM |
//! FORMAT_MESSAGE_ALLOCATE_BUFFER |
//! FORMAT_MESSAGE_IGNORE_INSERTS,
//! ptr::null(),
//! error_code, // error code from GetLastError()
//! 0,
//! (&mut buffer as *mut LPWSTR) as LPWSTR,
//! 0,
//! ptr::null_mut());
//!
//! // Get the buffer as a wide string
//! s = U16String::from_ptr(buffer, strlen as usize);
//! // Since U16String creates an owned copy, it's safe to free original buffer now
//! // If you didn't want an owned copy, you could use &U16Str.
//! LocalFree(buffer as HLOCAL);
//! }
//! // Convert to a regular Rust String and use it to your heart's desire!
//! let message = s.to_string_lossy();
//! # assert_eq!(message, "The operation completed successfully.\r\n");
//! # }
//! ```
//!
//! The following example is the functionally the same, only using [`U16CString`] instead.
//!
//! ```rust
//! # #[cfg(any(not(windows), not(feature = "alloc")))]
//! # fn main() {}
//! # extern crate winapi;
//! # extern crate widestring;
//! # #[cfg(all(windows, feature = "alloc"))]
//! # fn main() {
//! use winapi::um::winbase::{FormatMessageW, LocalFree, FORMAT_MESSAGE_FROM_SYSTEM,
//! FORMAT_MESSAGE_ALLOCATE_BUFFER, FORMAT_MESSAGE_IGNORE_INSERTS};
//! use winapi::shared::ntdef::LPWSTR;
//! use winapi::shared::minwindef::HLOCAL;
//! use std::ptr;
//! use widestring::U16CString;
//! # use winapi::shared::minwindef::DWORD;
//! # let error_code: DWORD = 0;
//!
//! let s: U16CString;
//! unsafe {
//! // First, get a string buffer from some windows api such as FormatMessageW...
//! let mut buffer: LPWSTR = ptr::null_mut();
//! FormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM |
//! FORMAT_MESSAGE_ALLOCATE_BUFFER |
//! FORMAT_MESSAGE_IGNORE_INSERTS,
//! ptr::null(),
//! error_code, // error code from GetLastError()
//! 0,
//! (&mut buffer as *mut LPWSTR) as LPWSTR,
//! 0,
//! ptr::null_mut());
//!
//! // Get the buffer as a wide string
//! s = U16CString::from_ptr_str(buffer);
//! // Since U16CString creates an owned copy, it's safe to free original buffer now
//! // If you didn't want an owned copy, you could use &U16CStr.
//! LocalFree(buffer as HLOCAL);
//! }
//! // Convert to a regular Rust String and use it to your heart's desire!
//! let message = s.to_string_lossy();
//! # assert_eq!(message, "The operation completed successfully.\r\n");
//! # }
//! ```
//!
//! [`OsString`]: std::ffi::OsString
//! [`OsStr`]: std::ffi::OsStr
//! [`CString`]: std::ffi::CString
//! [`CStr`]: std::ffi::CStr
#![warn(
missing_docs,
missing_debug_implementations,
trivial_casts,
trivial_numeric_casts,
future_incompatible
)]
#![allow(renamed_and_removed_lints, stable_features)] // Until min version gets bumped
#![cfg_attr(not(feature = "std"), no_std)]
#![doc(html_root_url = "https://docs.rs/widestring/1.1.0")]
#![doc(test(attr(deny(warnings), allow(unused))))]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![cfg_attr(
feature = "debugger_visualizer",
feature(debugger_visualizer),
debugger_visualizer(natvis_file = "../debug_metadata/widestring.natvis")
)]
#[cfg(feature = "alloc")]
extern crate alloc;
use crate::error::{DecodeUtf16Error, DecodeUtf32Error};
#[cfg(feature = "alloc")]
#[allow(unused_imports)]
use alloc::vec::Vec;
use core::fmt::Write;
pub mod error;
pub mod iter;
mod macros;
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
mod platform;
pub mod ucstr;
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub mod ucstring;
pub mod ustr;
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub mod ustring;
pub mod utfstr;
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub mod utfstring;
#[doc(hidden)]
pub use macros::internals;
pub use ucstr::{U16CStr, U32CStr, WideCStr};
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub use ucstring::{U16CString, U32CString, WideCString};
pub use ustr::{U16Str, U32Str, WideStr};
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub use ustring::{U16String, U32String, WideString};
pub use utfstr::{Utf16Str, Utf32Str, WideUtfStr};
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub use utfstring::{Utf16String, Utf32String, WideUtfString};
#[cfg(not(windows))]
/// Alias for [`u16`] or [`u32`] depending on platform. Intended to match typical C `wchar_t` size
/// on platform.
pub type WideChar = u32;
#[cfg(windows)]
/// Alias for [`u16`] or [`u32`] depending on platform. Intended to match typical C `wchar_t` size
/// on platform.
pub type WideChar = u16;
/// Creates an iterator over the UTF-16 encoded code points in `iter`, returning unpaired surrogates
/// as `Err`s.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::char::decode_utf16;
///
/// // 𝄞mus<invalid>ic<invalid>
/// let v = [
/// 0xD834, 0xDD1E, 0x006d, 0x0075, 0x0073, 0xDD1E, 0x0069, 0x0063, 0xD834,
/// ];
///
/// assert_eq!(
/// decode_utf16(v.iter().cloned())
/// .map(|r| r.map_err(|e| e.unpaired_surrogate()))
/// .collect::<Vec<_>>(),
/// vec![
/// Ok('𝄞'),
/// Ok('m'), Ok('u'), Ok('s'),
/// Err(0xDD1E),
/// Ok('i'), Ok('c'),
/// Err(0xD834)
/// ]
/// );
/// ```
///
/// A lossy decoder can be obtained by replacing Err results with the replacement character:
///
/// ```
/// use std::char::{decode_utf16, REPLACEMENT_CHARACTER};
///
/// // 𝄞mus<invalid>ic<invalid>
/// let v = [
/// 0xD834, 0xDD1E, 0x006d, 0x0075, 0x0073, 0xDD1E, 0x0069, 0x0063, 0xD834,
/// ];
///
/// assert_eq!(
/// decode_utf16(v.iter().cloned())
/// .map(|r| r.unwrap_or(REPLACEMENT_CHARACTER))
/// .collect::<String>(),
/// "𝄞mus�ic�"
/// );
/// ```
#[must_use]
pub fn decode_utf16<I: IntoIterator<Item = u16>>(iter: I) -> iter::DecodeUtf16<I::IntoIter> {
iter::DecodeUtf16::new(iter.into_iter())
}
/// Creates a lossy decoder iterator over the possibly ill-formed UTF-16 encoded code points in
/// `iter`.
///
/// This is equivalent to [`char::decode_utf16`][core::char::decode_utf16] except that any unpaired
/// UTF-16 surrogate values are replaced by
/// [`U+FFFD REPLACEMENT_CHARACTER`][core::char::REPLACEMENT_CHARACTER] (�) instead of returning
/// errors.
///
/// # Examples
///
/// ```
/// use widestring::decode_utf16_lossy;
///
/// // 𝄞mus<invalid>ic<invalid>
/// let v = [
/// 0xD834, 0xDD1E, 0x006d, 0x0075, 0x0073, 0xDD1E, 0x0069, 0x0063, 0xD834,
/// ];
///
/// assert_eq!(
/// decode_utf16_lossy(v.iter().copied()).collect::<String>(),
/// "𝄞mus�ic�"
/// );
/// ```
#[inline]
#[must_use]
pub fn decode_utf16_lossy<I: IntoIterator<Item = u16>>(
iter: I,
) -> iter::DecodeUtf16Lossy<I::IntoIter> {
iter::DecodeUtf16Lossy {
iter: decode_utf16(iter),
}
}
/// Creates a decoder iterator over UTF-32 encoded code points in `iter`, returning invalid values
/// as `Err`s.
///
/// # Examples
///
/// ```
/// use widestring::decode_utf32;
///
/// // 𝄞mus<invalid>ic<invalid>
/// let v = [
/// 0x1D11E, 0x6d, 0x75, 0x73, 0xDD1E, 0x69, 0x63, 0x23FD5A,
/// ];
///
/// assert_eq!(
/// decode_utf32(v.iter().copied())
/// .map(|r| r.map_err(|e| e.invalid_code_point()))
/// .collect::<Vec<_>>(),
/// vec![
/// Ok('𝄞'),
/// Ok('m'), Ok('u'), Ok('s'),
/// Err(0xDD1E),
/// Ok('i'), Ok('c'),
/// Err(0x23FD5A)
/// ]
/// );
/// ```
#[inline]
#[must_use]
pub fn decode_utf32<I: IntoIterator<Item = u32>>(iter: I) -> iter::DecodeUtf32<I::IntoIter> {
iter::DecodeUtf32 {
iter: iter.into_iter(),
}
}
/// Creates a lossy decoder iterator over the possibly ill-formed UTF-32 encoded code points in
/// `iter`.
///
/// This is equivalent to [`decode_utf32`] except that any invalid UTF-32 values are replaced by
/// [`U+FFFD REPLACEMENT_CHARACTER`][core::char::REPLACEMENT_CHARACTER] (�) instead of returning
/// errors.
///
/// # Examples
///
/// ```
/// use widestring::decode_utf32_lossy;
///
/// // 𝄞mus<invalid>ic<invalid>
/// let v = [
/// 0x1D11E, 0x6d, 0x75, 0x73, 0xDD1E, 0x69, 0x63, 0x23FD5A,
/// ];
///
/// assert_eq!(
/// decode_utf32_lossy(v.iter().copied()).collect::<String>(),
/// "𝄞mus�ic�"
/// );
/// ```
#[inline]
#[must_use]
pub fn decode_utf32_lossy<I: IntoIterator<Item = u32>>(
iter: I,
) -> iter::DecodeUtf32Lossy<I::IntoIter> {
iter::DecodeUtf32Lossy {
iter: decode_utf32(iter),
}
}
/// Creates an iterator that encodes an iterator over [`char`]s into UTF-8 bytes.
///
/// # Examples
///
/// ```
/// use widestring::encode_utf8;
///
/// let music = "𝄞music";
///
/// let encoded: Vec<u8> = encode_utf8(music.chars()).collect();
///
/// assert_eq!(encoded, music.as_bytes());
/// ```
#[must_use]
pub fn encode_utf8<I: IntoIterator<Item = char>>(iter: I) -> iter::EncodeUtf8<I::IntoIter> {
iter::EncodeUtf8::new(iter.into_iter())
}
/// Creates an iterator that encodes an iterator over [`char`]s into UTF-16 [`u16`] code units.
///
/// # Examples
///
/// ```
/// use widestring::encode_utf16;
///
/// let encoded: Vec<u16> = encode_utf16("𝄞music".chars()).collect();
///
/// let v = [
/// 0xD834, 0xDD1E, 0x006d, 0x0075, 0x0073, 0x0069, 0x0063,
/// ];
///
/// assert_eq!(encoded, v);
/// ```
#[must_use]
pub fn encode_utf16<I: IntoIterator<Item = char>>(iter: I) -> iter::EncodeUtf16<I::IntoIter> {
iter::EncodeUtf16::new(iter.into_iter())
}
/// Creates an iterator that encodes an iterator over [`char`]s into UTF-32 [`u32`] values.
///
/// This iterator is a simple type cast from [`char`] to [`u32`], as any sequence of [`char`]s is
/// valid UTF-32.
///
/// # Examples
///
/// ```
/// use widestring::encode_utf32;
///
/// let encoded: Vec<u32> = encode_utf32("𝄞music".chars()).collect();
///
/// let v = [
/// 0x1D11E, 0x006d, 0x0075, 0x0073, 0x0069, 0x0063,
/// ];
///
/// assert_eq!(encoded, v);
/// ```
#[must_use]
pub fn encode_utf32<I: IntoIterator<Item = char>>(iter: I) -> iter::EncodeUtf32<I::IntoIter> {
iter::EncodeUtf32::new(iter.into_iter())
}
/// Debug implementation for any U16 string slice.
///
/// Properly encoded input data will output valid strings with escape sequences, however invalid
/// encoding will purposefully output any unpaired surrogate as \<XXXX> which is not a valid escape
/// sequence. This is intentional, as debug output is not meant to be parsed but read by humans.
fn debug_fmt_u16(s: &[u16], fmt: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
debug_fmt_utf16_iter(decode_utf16(s.iter().copied()), fmt)
}
/// Debug implementation for any U16 string iterator.
///
/// Properly encoded input data will output valid strings with escape sequences, however invalid
/// encoding will purposefully output any unpaired surrogate as \<XXXX> which is not a valid escape
/// sequence. This is intentional, as debug output is not meant to be parsed but read by humans.
fn debug_fmt_utf16_iter(
iter: impl Iterator<Item = Result<char, DecodeUtf16Error>>,
fmt: &mut core::fmt::Formatter<'_>,
) -> core::fmt::Result {
fmt.write_char('"')?;
for res in iter {
match res {
Ok(ch) => {
for c in ch.escape_debug() {
fmt.write_char(c)?;
}
}
Err(e) => {
write!(fmt, "\\<{:X}>", e.unpaired_surrogate())?;
}
}
}
fmt.write_char('"')
}
/// Debug implementation for any U16 string slice.
///
/// Properly encoded input data will output valid strings with escape sequences, however invalid
/// encoding will purposefully output any invalid code point as \<XXXX> which is not a valid escape
/// sequence. This is intentional, as debug output is not meant to be parsed but read by humans.
fn debug_fmt_u32(s: &[u32], fmt: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
debug_fmt_utf32_iter(decode_utf32(s.iter().copied()), fmt)
}
/// Debug implementation for any U16 string iterator.
///
/// Properly encoded input data will output valid strings with escape sequences, however invalid
/// encoding will purposefully output any invalid code point as \<XXXX> which is not a valid escape
/// sequence. This is intentional, as debug output is not meant to be parsed but read by humans.
fn debug_fmt_utf32_iter(
iter: impl Iterator<Item = Result<char, DecodeUtf32Error>>,
fmt: &mut core::fmt::Formatter<'_>,
) -> core::fmt::Result {
fmt.write_char('"')?;
for res in iter {
match res {
Ok(ch) => {
for c in ch.escape_debug() {
fmt.write_char(c)?;
}
}
Err(e) => {
write!(fmt, "\\<{:X}>", e.invalid_code_point())?;
}
}
}
fmt.write_char('"')
}
/// Debug implementation for any `char` iterator.
fn debug_fmt_char_iter(
iter: impl Iterator<Item = char>,
fmt: &mut core::fmt::Formatter<'_>,
) -> core::fmt::Result {
fmt.write_char('"')?;
iter.flat_map(|c| c.escape_debug())
.try_for_each(|c| fmt.write_char(c))?;
fmt.write_char('"')
}
/// Returns whether the code unit a UTF-16 surrogate value.
#[inline(always)]
#[allow(dead_code)]
const fn is_utf16_surrogate(u: u16) -> bool {
u >= 0xD800 && u <= 0xDFFF
}
/// Returns whether the code unit a UTF-16 high surrogate value.
#[inline(always)]
#[allow(dead_code)]
const fn is_utf16_high_surrogate(u: u16) -> bool {
u >= 0xD800 && u <= 0xDBFF
}
/// Returns whether the code unit a UTF-16 low surrogate value.
#[inline(always)]
const fn is_utf16_low_surrogate(u: u16) -> bool {
u >= 0xDC00 && u <= 0xDFFF
}
/// Convert a UTF-16 surrogate pair to a `char`. Does not validate if the surrogates are valid.
#[inline(always)]
unsafe fn decode_utf16_surrogate_pair(high: u16, low: u16) -> char {
let c: u32 = (((high - 0xD800) as u32) << 10 | ((low) - 0xDC00) as u32) + 0x1_0000;
// SAFETY: we checked that it's a legal unicode value
core::char::from_u32_unchecked(c)
}
/// Validates whether a slice of 16-bit values is valid UTF-16, returning an error if it is not.
#[inline(always)]
fn validate_utf16(s: &[u16]) -> Result<(), crate::error::Utf16Error> {
for (index, result) in crate::decode_utf16(s.iter().copied()).enumerate() {
if let Err(e) = result {
return Err(crate::error::Utf16Error::empty(index, e));
}
}
Ok(())
}
/// Validates whether a vector of 16-bit values is valid UTF-16, returning an error if it is not.
#[inline(always)]
#[cfg(feature = "alloc")]
fn validate_utf16_vec(v: Vec<u16>) -> Result<Vec<u16>, crate::error::Utf16Error> {
for (index, result) in crate::decode_utf16(v.iter().copied()).enumerate() {
if let Err(e) = result {
return Err(crate::error::Utf16Error::new(v, index, e));
}
}
Ok(v)
}
/// Validates whether a slice of 32-bit values is valid UTF-32, returning an error if it is not.
#[inline(always)]
fn validate_utf32(s: &[u32]) -> Result<(), crate::error::Utf32Error> {
for (index, result) in crate::decode_utf32(s.iter().copied()).enumerate() {
if let Err(e) = result {
return Err(crate::error::Utf32Error::empty(index, e));
}
}
Ok(())
}
/// Validates whether a vector of 32-bit values is valid UTF-32, returning an error if it is not.
#[inline(always)]
#[cfg(feature = "alloc")]
fn validate_utf32_vec(v: Vec<u32>) -> Result<Vec<u32>, crate::error::Utf32Error> {
for (index, result) in crate::decode_utf32(v.iter().copied()).enumerate() {
if let Err(e) = result {
return Err(crate::error::Utf32Error::new(v, index, e));
}
}
Ok(v)
}
/// Copy of unstable core::slice::range to soundly handle ranges
/// TODO: Replace with core::slice::range when it is stabilized
#[track_caller]
#[allow(dead_code, clippy::redundant_closure)]
fn range<R>(range: R, bounds: core::ops::RangeTo<usize>) -> core::ops::Range<usize>
where
R: core::ops::RangeBounds<usize>,
{
#[inline(never)]
#[cold]
#[track_caller]
fn slice_end_index_len_fail(index: usize, len: usize) -> ! {
panic!(
"range end index {} out of range for slice of length {}",
index, len
);
}
#[inline(never)]
#[cold]
#[track_caller]
fn slice_index_order_fail(index: usize, end: usize) -> ! {
panic!("slice index starts at {} but ends at {}", index, end);
}
#[inline(never)]
#[cold]
#[track_caller]
fn slice_start_index_overflow_fail() -> ! {
panic!("attempted to index slice from after maximum usize");
}
#[inline(never)]
#[cold]
#[track_caller]
fn slice_end_index_overflow_fail() -> ! {
panic!("attempted to index slice up to maximum usize");
}
use core::ops::Bound::*;
let len = bounds.end;
let start = range.start_bound();
let start = match start {
Included(&start) => start,
Excluded(start) => start
.checked_add(1)
.unwrap_or_else(|| slice_start_index_overflow_fail()),
Unbounded => 0,
};
let end = range.end_bound();
let end = match end {
Included(end) => end
.checked_add(1)
.unwrap_or_else(|| slice_end_index_overflow_fail()),
Excluded(&end) => end,
Unbounded => len,
};
if start > end {
slice_index_order_fail(start, end);
}
if end > len {
slice_end_index_len_fail(end, len);
}
core::ops::Range { start, end }
}
/// Similar to core::slice::range, but returns [`None`] instead of panicking.
fn range_check<R>(range: R, bounds: core::ops::RangeTo<usize>) -> Option<core::ops::Range<usize>>
where
R: core::ops::RangeBounds<usize>,
{
use core::ops::Bound::*;
let len = bounds.end;
let start = range.start_bound();
let start = match start {
Included(&start) => start,
Excluded(start) => start.checked_add(1)?,
Unbounded => 0,
};
let end = range.end_bound();
let end = match end {
Included(end) => end.checked_add(1)?,
Excluded(&end) => end,
Unbounded => len,
};
if start > end || end > len {
return None;
}
Some(core::ops::Range { start, end })
}